Supra-threshold Testing Using Speech-in-Noise and Auditory Evoked Potentials

Colleen G Le Prell PhD, Douglas S Brungart PhD

In this white paper, we discuss the use of supra-threshold tests, including supra-threshold auditory brainstem response (ABR) and speech-in-noise testing, for early detection of noise-induced hearing loss (NIHL) and for assessing the effectiveness of interventions designed to prevent NIHL. In humans, the accepted clinical standard for detecting NIHL is the behavioral audiogram, which is based on the absolute detection threshold of narrow-band noises or tones (for detailed review, see Le Prell & Lobarinas, 2015). There is little question that the audiogram is a reliable and sensitive measure of NIHL in human listeners. However, recent results from noise exposed animals suggest that NIHL can cause substantial neurodegeneration in the peripheral auditory system without degrading the pure tone audiometric threshold, as measured by the threshold ABR (Le Prell & Bao, 2012; Kujawa &Liberman, 2009). This suggests that clinical measures of auditory performance that are conducted with stimuli presented above the detection threshold, such as speech-in-noise testing or the supra-threshold ABR, may be more sensitive than the behavioral audiogram in detecting early stage NIHL in listeners with audiometric thresholds within normal limits. Also, from a more practical standpoint, it is often difficult to find locations with low enough ambient noise levels for the collection of valid behavioral audiometric threshold data in the austere working environments where occupational noise exposures are most likely to occur. This can cause logistical difficulties in the design of studies aimed at the detection of small changes in the hearing abilities of noise exposed listeners. These environmental concerns can provide additional motivation to use supra-threshold speech-in-noise testing or supra-threshold
ABR responses as a supplement to the behavioral audiogram in the measurement of small changes in hearing loss in noise-exposed listeners.

Speech-Based Functional Tests

Individuals with high-frequency hearing loss are impaired in terms of their ability to understand speech in noise because some parts of the speech signal are inaudible due to their elevated thresholds (Quist-Hanssen et al., 1979; Badri et al., 2011). However, most hearing scientists believe that, in addition to this audibility component, there is also a distortion component of hearing loss that causes hearing impaired listeners to perform poorly on tests of speech-in-noise perception even when all components of the speech signal are theoretically audible (Plomp, 1986). Consequently, the American Academy of Otolaryngology (AAO) recently recommended word recognition test scores be collected in all clinical trials that assess auditory function (Gurgel et al., 2012). Although the absolute nature of this guidance has been questioned by the American Academy of Audiology, which believes that speech-in-noise testing, specifically, is not optimal for all clinical trial populations (Carlson, 2013), there are many reasons to believe that tests using speech-in-noise backgrounds may play an important role in providing a “stress test” for auditory function (Wilson, 2011) that may be more sensitive to small changes in hearing ability than a behavioral audiogram. Moreover, interest and enthusiasm for speech-in-noise tasks as a proxy for auditory function should be high given suggestions that loss of neural connections from inner hair cells, resulting in decreased ABR amplitude in the absence of overt threshold shift, may underlie speech-in-noise discrimination deficits (Kujawa & Liberman, 2009; Lin et al., 2011; Makary et al., 2011).

The impact that interfering noise has on speech perception has long been a subject of interest to hearing scientists, and over the past 70 years a substantial number of speech-in-noise tests have emerged in the literature. Most of these tests were initially designed for use in hearing research (e.g., Carhart & Tillman, 1970), although many of them have also been adapted for use in the clinic (Carhart, 1951, for review, see Wilson, 2011). Early example of tests that were initially designed primarily for research have included the Speech Perception in Noise (SPIN) Test (Kalikow et al., 1977), the Revised Spin Test (R-SPIN) (Bilger et al., 1984), the Connected Speech Test (CST), (Cox et al., 1987; Cox et al., 1988), the Speech Intelligibility Rating (SIR) test (McDaniel & Cox, 1992; Beck & Speaks, 1993), and the Revised Speech Intelligibility Rating (RSIR) test (Speaks et al., 1994).

In recent years, a few speech-in-noise tests have begun to be used more widely in the clinic. Two examples are the Hearing in Noise Test (HINT) as modified for American English (Nilsson et al., 1994) and the Speech Recognition in Noise Test (SPRINT) (AR 40-501; Standards of Medical Fitness, http://www.apd.army.mil/pdffiles/r40_501.pdf), both of which are used primarily for evaluating the fitness for duty of hearing impaired individuals in high-risk occupations such as police and fire departments and in the military. Three other widely-used speech-in-noise tests include the Quick Speech-In-Noise (QuickSIN) test (Killion et al., 2004), the Words-in-Noise (WIN) test (for review, see
Wilson, 2011), and the Oldenburg Matrix Sentence Tests (OLSA) (Wagener, Brand, & Kollmeier, 1999), which is used primarily in Europe. These tests are used to assess general speech-in-noise performance and, in some cases, to assess hearing aid or cochlear implant candidacy. It is difficult to provide good (evidence-based) guidance on the selection of speech-in-noise tasks for clinical trials, as there have not been many studies that provide empirical data directly comparing performance of participants across speech-in-noise tests, although there are some notable examples of studies that do offer back-to-back comparisons, such as Wilson et al. (2007) and Grant and Walden (2013). One finding of these back-to-back comparisons is that the WIN tends to be one of the more challenging tests for young listeners with normal hearing, which may be helpful in ensuring that no floor effects occur in studies designed to detect small changes in hearing in this population.

In general, the correlation between speech-in-noise scores and the behavioral audiogram is not very high, suggesting that factors other than pure audibility have a strong influence on speech perception performance in hearing impaired listeners (Smorenberg, 1992). However, recent research has shown certain speech-in-noise tests, and in particular those that adaptively determine the speech reception threshold of three-digit sequences presented in noise, can be reasonably effective in identifying individuals with abnormal hearing (i.e., Pure Tone Averages at 0.5, 1.0, and 2.0 kHz >20 dB), even when administered over a relatively crude telephone line (Watson, Kidd, Miller, Smits, & Humes, 2012).

In terms of their utility for assessing small changes in hearing in a clinical evaluation of oto-protectants, there are potential advantages to the use of speech-in-noise tests as a supplement to the pure tone audiogram. Speech-in-noise stimuli can and should be presented well above threshold levels, meaning that they could potentially be conducted under noise-attenuating headphones in office or clinic spaces with background noise levels that would be too high to obtain a behavioral audiogram. They also provide an objective measure of performance that allows listeners to be provided with correct answer feedback and may be more stable over time than the subjective judgment of the presence or absence of a low-level tone. Finally, they provide a stimulus with sufficient ecological validity to independently sustain a claim of efficacy in a clinical trial focused on the elimination of NIHL; few would question the utility of an intervention that preserved speech-in-noise performance even if it had no impact on the pure tone audiogram. However, it must also be recognized that studies focused on the effectiveness of NIHL interventions are implicitly based on sequential changes in metrics that occur within a single subject pre- and post-noise exposure, and that there is very little data currently available to suggest how effective speech-in-noise tests might be when used in this fashion.

One fundamental issue that must be addressed is the possibility of learning effects across repeated administrations of the same speech-in-noise test. Most tests with open-set speech materials have at least a few different lists of words that are purported to be “equivalently difficult”, but when using one of these tests the experimenter always has
to make a trade-off between the number of times the test is administered and the
number of lists to use per test (to improve reliability). Closed-set tests, such as the OLSA
or the Triple-Digit test may be more suitable for studies evaluating longitudinal changes
in hearing loss.

Also, although it is well known that speech-in-noise performance degrades with
increasing hearing loss, the temporal relationship between speech-in-noise
performance and hearing loss is not known. It may be the case that small changes in
the speech-in-noise score will be seen before changes in the behavioral audiogram are
detectable, or it may be that changes in the audiogram will always occur before a
change in speech in noise performance. Thus, at this point, it must be admitted that
there is some risk that speech-in-noise testing will not be as sensitive as the audiogram
for detecting changes in hearing sensitivity. Nevertheless, the inclusion of speech-in-
noise testing where possible is recommended, as the potential benefits of finding small
changes in hearing that are not detectable on the behavioral audiogram are likely to
outweigh the relatively modest costs of including a short speech-in-noise test battery as
part of the pre- and post- noise exposure evaluation.

Auditory Brainstem Response (ABR)
ABR supra-threshold input-output functions are considered to be a “gold standard”
metric for assessing lasting effects of noise on the neural population in animal testing.
Interest in ABR tests in humans has been increasing given reported loss of neural
connections from inner hair cells, with corresponding decrease in Wave I ABR
amplitude, after noise exposures that produce robust threshold shift (i.e., approximately
40-dB temporary threshold shift, or “TTS” (see “Temporary and Permanent Noise-
Induced Threshold Shifts” guidance document for further definition), measured 24-hours
post-noise) in rodents (Kujawa & Liberman, 2009; Lin et al., 2011; Wang & Ren, 2012).
Limited physiological data from humans have not shown corresponding deficits
however. There were no deficits in ABR amplitude in either Veterans with known noise
exposure (Konrad-Martin et al., 2012) or professional pop/rock musicians (Samelli et al.,
2012) compared to control subjects. Additional controlled studies are needed. If
human ABR amplitude varies with noise exposure history, in the absence of threshold
deficits, we may ultimately gain insight into the “critical boundary” at which noise
becomes hazardous to synapses in human ears, a boundary that is not currently known
for either humans or laboratory animals (for discussion of critical boundary, see Le Prell
et al., 2012; Spankovich et al., 2014). One problem in human testing of the ABR is that
the absolute level of the ABR can vary according to the placement and sensitivity of
the electrodes used to make the measurement. If an attempt to measure Wave I ABR
recordings is attempted as part of a clinical trial, every effort must be made to increase
the sensitivity of the measure. Possible strategies include using electrodes that utilize the
ear canal as a recording site to improve sensitivity (Gaddam & Ferraro, 2008), and
normalizing the electrode sensitivity by using the of Wave I/ Wave V amplitude ratio
rather than an absolute measure of Wave I output (Musiek et al., 1984). Amplitude of
Wave I may not be the only evoked potential of interest. Recently, Ruggles et al. (2011;
identified variability in the auditory brainstem frequency-following response in normal-hearing young adults as a key factor for difficulty discriminating sounds in noise. Other groups are independently arriving at similar conclusions; Hopkins and Moore (2011) also reported reduced sensitivity to temporal fine structure cues may underlie speech perception difficulties.

Challenges to the field

Oto-protection studies have focused on the ability of agents to reduce or prevent threshold shifts. However, an emerging body of evidence suggests that changes in supra-threshold hearing may also be important. Provocative data from animal studies suggest that robust TTS can be accompanied by damage to auditory nerve fiber synapses. Deficits on speech in noise tasks are common, but there is little agreement which tests to use to document deficits. Noise-induced ABR amplitude changes are a “hot-topic” in animal models, but such changes have not been established in humans. This is clearly relevant to long-term trajectory of noise-induced changes in hearing. Slow-to-develop loss of the spiral ganglion fibers and increased changes in hearing associated with aging were observed over the course of the mouse life span after robust TTS (Kujawa & Liberman, 2006). Those data contradict a long-standing assumption that, as long as thresholds recover, the ear has completely recovered. These reports have raised important questions, such as whether a more moderate TTS could also induce long-term deficits through similar neural-based mechanisms. The “critical boundary” at which long-term synaptic deficits are first induced is not known in rodents or humans (for discussion, see Le Prell et al., 2012; Spankovich et al., 2014), and is subject to some debate. Some evidence suggests the phenomena is likely in humans (Plack et al., 2014). In contrast, the Institute of Medicine (2005) report on Noise and Military Service specifically concluded, “The committee’s understanding of the mechanisms and processes involved in the recovery from noise exposure suggests, however, that a prolonged delay in the onset of noise-induced hearing loss is unlikely.”

Given all the evidence suggesting that some functional changes in hearing can occur prior to the point where a significant threshold shift is seen in the audiogram, we believe that strong arguments can be made for the inclusion of some supra-threshold measure of performance as part of any large-scale study designed to detect small changes in hearing in noise-exposed populations, including those focused on evaluating the efficacy of interventions for noise-induced hearing loss. Unfortunately, because few if any studies to date have compared the sensitivity of different speech-in-noise tests to longitudinal, within-subject changes in hearing ability, it is difficult to define a single best practice for conducting such tests. If speech in noise testing is confined to just a small number of measurement sessions per subject, any of a number of clinical tests could be used for the pre- and post-testing, including the widely-available WIN and QuickSIN. However, if a larger number of periodic test sessions are required, it may be desirable to switch to a closed set test such as the OLSA or the Triple Digit test, which can be scored automatically and can be administered as many times as necessary without significant learning effects. If time permits and it is possible to include a speech-in-noise test more
sensitive than the speech-in-noise tests typically included in a standard clinical battery, then it might be reasonable to include a more challenging speech perception condition where the target talker is presented over headphones at a simulated location in front of the listener and two flanking maskers speech maskers are located to the left and the right of the target talker. Examples of such tests include the modified version of the QuickSIN, where the target talker is time-compressed and presented in the presence of simulated room reverberation proposed by Brungart, Sheffield, and Kubli (2014); the modified version of the Coordinate Response Measure proposed by Gallun, Diedesch, and Campbell (2013); or the Listening in Spatialized Noise test (LiSN-S), proposed by the National Acoustics Laboratory in Australia (Cameron, Glyde & Dillon, 2011). These tests have all been shown to be more sensitive than standard speech-in-noise tests to auditory deficits in listeners who complain about speech in noise problems but have relatively normal audiometric thresholds. Because there is so little information on longitudinal changes in speech-in-noise perception in noise exposed populations, we contend that the most important consideration right now is to make every effort to ensure that some speech-in-noise testing is included in the design of large-scale studies examining the effects of noise exposure on hearing ability. We believe the costs of adding an additional speech-in-noise measure would, in most cases, be relatively minor compared to the large-scale logistical costs of identifying and sequentially testing a large population of listeners pre- and post- noise exposure, and that the results of these studies will provide invaluable information that will help shape the design of future studies examining interventions for NIHL and answer basic questions about human hearing that have applications far beyond the results of any single study conducted in this area.

References

http://hearing.health.mil/EducationAdvocacy/Newsletters.aspx